Continuous Process -
Advanced Process Control
Instructions with Logix
Table of Contents

TABLE OF CONTENTS __3
CONTINUOUS PROCESS - ADVANCED PROCESS CONTROL INSTRUCTIONS WITH LOGIX ________5
ABOUT ADVANCED PROCESS CONTROL FUNCTIONALITY _____________________________5
BEFORE YOU BEGIN __6
LAB MATERIALS ___6
DOCUMENT CONVENTIONS__7
LAB 1: USING THE IMC INSTRUCTION (40 MINUTES) ________________________________9
ABOUT THIS LAB __9
COMPARING PIDE LOOP CONTROL TO IMC LOOP CONTROL _________________________9
LAB 2: COORDINATED CONTROL (20 MINUTES) __________________________________33
ABOUT THIS LAB ___33
EXPLORING THE COORDINATED CONTROL INSTRUCTION ________________________33
Continuous Process - Advanced Process Control Instructions with Logix

About Advanced Process Control Functionality

A traditional control system controls processes to fixed setpoints determined by operators. Generic control algorithms and instructions such as a PID controller are used.

Advanced Process Control (APC) is designed to automatically account for an expected (modeled, predicted, etc.) process response and calculates “optimal” control actions to minimize process variations. APC system utilizes technologies such as:

- Model Predictive control
- Multivariable control
- Fuzzy logic and control
- Adaptive control
- Inferential control
- Process modeling and simulation

What You Will Accomplish In This Lab

In this lab you will explore two different versions of APC: Internal Model Control (IMC) and Coordinated Control (CC).

Who Should Complete This Lab

This hands-on lab is intended for individuals who:

- Want to become more familiar with the Advance Process Control features of RSLogix 5000.
- Already have familiarity with RSLogix 5000 organizational layout and programming techniques.
Before You Begin

Before you begin this Hands-On Lab, please be sure to close any applications that are currently running.

To complete this lab, a general familiarity of computers, programmable controllers, I/O and automation software is recommended but not essential.

You will be using a V17 controller for this lab. Locate it on your station in the upper controller rack. The IP address of the Ethernet/IP card in the rack should be 172.16.XX.3, where XX is the number of your station.

Lab Materials

For this Hands-On lab, we have provided you with the following materials that will allow you to complete the labs in this workbook.

Hardware
L63 Logix Controller.

Software
This hands-on lab uses the following software:
- RSLogix™ 5000 V17
- RSLinx Classic

Lab Files
This hands-on lab uses the following files:
- V17 Advanced Process Control AU09.doc
 - IMC_Simulation.L5X
 - SquareWave.L5X
Document Conventions

Throughout this workbook, we have used the following conventions to help guide you through the lab materials.

<table>
<thead>
<tr>
<th>This style or symbol:</th>
<th>Indicates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words shown in bold italics (e.g., RSLogix 5000 or OK)</td>
<td>Any item or button that you must click on, or a menu name from which you must choose an option or command. This will be an actual name of an item that you see on your screen or in an example.</td>
</tr>
<tr>
<td>Words shown in bold italics, enclosed in single quotes (e.g., 'Controller1')</td>
<td>An item that you must type in the specified field. This is information that you must supply based on your application (e.g., a variable).</td>
</tr>
<tr>
<td>Note: When you type the text in the field, remember that you do not need to type the quotes; simply type the words that are contained within them (e.g., Controller1).</td>
<td></td>
</tr>
</tbody>
</table>

| Tip Text | The text that appears inside of this gray box is supplemental information regarding the lab materials, but not information that is required reading in order for you to complete the lab exercises. The text that follows this symbol may provide you with helpful hints that can make it easier for you to use this product. Most often, authors use this “Tip Text” style for important information they want their students to see. |

Note: If the mouse button is not specified in the text, you should click on the left mouse button.
Lab 1: Using the IMC Instruction (40 minutes)

About This Lab

In this lab you will explore the functionality of the Internal Model Control (IMC) instruction. This instruction controls a single process variable by manipulating a single output. The instruction compares the actual process signal to an internal model. The internal model can be manually entered, or the built-in autotuner can be used. This instruction is most suitable for processes with long deadtimes which are difficult to control with standard PID instructions. The setup and configuration parameters, as well as the autotune function, are very similar to the PIDE instruction.

Note: The PIDE instruction uses an autotune to generate a process model which is then used to generate P, I and D gain values. Once the gains are calculated the model is not utilized in the control loop. The IMC instruction uses the process model directly and continuously compares the process response (PV) to the modeled response. This results in tighter control to the setpoint for processes with long deadtimes, when compared with PIDE performance.

Comparing PIDE Loop Control to IMC Loop Control

1. Open RSLogix 5000.
2. Select File > New.
3. Configure your controller as shown below adding Name: CLX and then click OK.

![Controller Configuration](image-url)
4. Expand the MainProgram by clicking on the ‘+’. Right click on MainProgram and select New Routine.

5. Configure the new routine as shown below and click OK.

6. Right click on MainTask and select Properties.
7. Go to the **Configuration** tab and change the **Type** to **Periodic** and set the **Period** to ‘500’.

8. Click **OK** when done.

9. Right click on **MainProgram** and select **Properties**. In the **Configuration** tab, change **Assigned Routines Main** to ‘PIDE_vs_IMC’ and click **OK**.
10. Right click on **MainRoutine** and select **Delete**.

11. Click **Yes** to confirm the deletion.

Why did we delete this? We could have just used a JSR to call the PIDE_vs_IMC routine. It was deleted to totally eliminate any ladder logic from the project. Some “Process” people would see ladder logic and say “this is a PLC – and PLCs aren’t good for process control. It really just shows that ControlLogix controller is in no way dependent on Ladder logic.

12. Right click on the **Add-On Instructions** folder and select **Import Add-On Instruction**.
13. Go to the **Advanced Process Control** folder and select **IMC_Simulation.L5K**.

This block will be used to simulate the controlled system.

14. Click **Import**.

The following window opens:
15. Click **OK** to complete the import.
The Add-On Instruction should now appear in your project.

16. Import the **SquareWave.L5K** Add-On Instruction.
17. Double click on the **PIDE_vs_IMC routine** and configure the logic shown below.
Note: If you are unfamiliar with configuring logic using function blocks just ask your instructor for assistance.

18. Add the PIDE and IMC blocks as shown below.

Note: In order to reduce the size of the function blocks several parameters (which are by default visible) have been hidden. You may leave them visible, or go into the function block parameters and uncheck the box in the first column (do this on the PIDE block only). If you are unfamiliar with this ask your instructor for assistance.

Note: You may have to increase the sheet size. Just right click on the page, select Properties and then Sheet Layout and select whatever size sheet you want.
19. Next we need to add process simulation. Add the Add-On Instruction IMC_Simulation as shown below.

Note: Be sure to add 'Assume Data Available' to the feedback from the simulation to the PIDE and IMC blocks. Again, if you are not familiar with this concept or process ask your instructor.

20. Add a ‘PID_Tune’ tag to the PIDE block and right click to define the New ‘PID_Tune’ tag.
21. Open the parameters for the IMC block () and on the Autotune tab for Process Type select **Non-Integrating**.

22. Click **OK** to accept your change.

23. Verify your controller. There should be no errors.

24. Create a new trend by right clicking on the **Trend** folder and selecting **New Trend**.
25. Configure the new trend as shown below. Name Process_Simulation, Sample Period 100ms.

26. Click **Next** and add the tags listed below.
27. Click **Finish**. The chart will appear.
28. Right click on the chart and select **Chart Properties**.
29. Click on the **Pens** tab and adjust the pen colors as you wish. The first pen is usually dark purple which doesn’t show-up very well.

30. Click on the **X-Axis** tab and adjust the X-axis time span as shown below.
31. Click on the **Y-Axis** tab and adjust the Y-axis as shown below.

32. Click **OK** to finish the trend.

33. **Verify** ![] and **Save** ![] your project.

34. Download the project to your controller and put the controller into **Run** mode.

35. Double click on the **PID_vs_IMC routine** to view the logic.

36. Open the PIDE parameters by clicking on the **...** button.
37. Select the **Autotune** tab.

![Autotune tab](image1)

38. Click on the **Acquire Tag** button and adjust the CV Step Size to ‘20’.

![Acquire Tag button](image2)
39. Click on the **Autotune** button and click **Yes** to accept the changes before starting the autotune.

40. Click on the **Start** button to begin the autotune.
41. The Execution State will change from Ready to In Progress.

![Image of Autotune Process]

42. When the autotune is complete (this will take several minutes) the Execution State will change to Complete and Autotune Gains will be displayed.

![Image of Autotune Gains]
43. Select **Medium Response** and click on **Set Gains in PIDE**.

Note that gains have now been loaded into the 'Current' line.

44. Click **Close**. The Autotune tab shows the results of the autotune and the current loaded gains.
45. Click **OK**.

46. Click on the Properties button for the IMC block and then select the **Autotune** tab.

47. Change the CV Step size to **20** and then click **Apply**.
48. Click on the **Start** button () to perform the autotune.
49. After completion the Autotuned Model Values will be populated.

50. *Medium* is the default Response Time Constant selected, click on the *Set Tuned Values* button.
51. Click on the Model tab. This displays the internal model which will be used by the instruction.

52. Click OK to close the IMC Parameters window.
53. Double click on the **Process_Simulation** trend and then click on the **Run** button (top left corner) to start the chart. Depending on the moment that you start trending, the next screen may look different. The setpoint is cycled from 5 to 70 by the simulation every 10 min.

Note that the SPProg values changes (square wave) but that the PIDE.PV and IMC.PV values are steady state, that is because both the PIDE and IMC blocks are in Operator Manual mode and their CE outputs to the process simulation are at zero.
54. Change both the PIDE and IMC blocks to Program Auto mode by setting the *ProgProgReq* and *ProgAutoReq* parameters to ‘1’. If you are not familiar with this process ask your instructor.

Observe the trend for at least one cycle.

Notice that the PID loop overshoots when the setpoint jumps up and undershoots when it drops low. The PID loop eventually gets to the setpoint, but the IMC loop does a much better job for this particular process.

If you want to see more details, add the CVEU pens to watch the control actions of the PIDE and IMC instructions.

This concludes lab 1.
Lab 2: Coordinated Control (20 Minutes)

About This Lab

In this lab you will explore the functionality of the Coordinated Control (CC) instruction. This instruction controls a single process variable by manipulating as many as three different outputs. Target values and priorities for each of the outputs are used to optimize your process control. The instruction compares the actual process signal to an internal model for each output. Each output may be in manual control or automatically controlled. The internal models can be manually entered, or the built-in autotuners for each control variable can be used. The setup and configuration parameters, as well as the autotune function, are very similar to the PIDE instruction.

Exploring the Coordinated Control Instruction

1. Go Offline with your RSLogix 5000 project Advanced Process Control

2. Right click on the MainTask and select New Program.

3. Name the new program ‘Coordinated_Control’ and click OK.
4. Right click on *Coordinated_Control* and select *New Routine*.

5. Name the new routine ‘*CC_Simulation*’, select *Function Block Diagram* as the Type and click *OK*.
6. Double click on **CC_Simulation** and create the following logic:

Note. Create all the tags shown as
Data type: **REAL**, Scope: **Coordinated_Control** and Style: **Float**

<table>
<thead>
<tr>
<th>Name</th>
<th>Data Type</th>
<th>Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPC_AgitatorSpeed</td>
<td>REAL</td>
<td>Float</td>
</tr>
<tr>
<td>MPC_AirFlow</td>
<td>REAL</td>
<td>Float</td>
</tr>
<tr>
<td>MPC_DissolvedOxygen_PV</td>
<td>REAL</td>
<td>Float</td>
</tr>
<tr>
<td>MPC_DissolvedOxygen_SP</td>
<td>REAL</td>
<td>Float</td>
</tr>
<tr>
<td>MPC_Pressure</td>
<td>REAL</td>
<td>Float</td>
</tr>
</tbody>
</table>
Create a second sheet of logic as shown.

Details: Input and Output reference tags used on sheet 2 were created on sheet 1. Create the following blocks and arrange as shown above:

- LDLG01 – 15 sec Lag
- LDLG02 – 30 sec Lag
- LDLG03 – 45 sec Lag
- DEDT01 – 5 sec Deadtime
- DEDT02 – 10 sec Deadtime
- DEDT03 – 15 sec Deadtime

In the storage array tab in the properties of the deadtime blocks, create the following new tags with Data type: REAL (and change Dim0 value to 1000), Scope: Coordinated_Control and Style: Float:

- DEDT_01_Array REAL[1000]
- DEDT_02_Array REAL[1000]
- DEDT_03_Array REAL[1000]
7. Set the CC block parameters on the various tabs as shown

The target values are the desired values for CV1, CV2 and CV3.
Click **APPLY**
Note: These are to be left at the default settings.
Note: This tab allows you to set limits on Set point and the control variables.

Click **APPLY**
Note: These are to be left at the default settings. They will be automatically populated after we run the autotune feature. If models were developed using some other method they could be manually entered here.
These are the default settings for this tab.

8. Click **OK** and then **Verify controller**.

 You should get the following Error:

 *Warning: 'Coordinated_Control' Program doesn't have associated main routine."

9. Right click on the Coordinated_Control program, select **Properties, Configuration** and then set the Main routine to **CC_Simulation**.
10. Create another trend as follows:

11. Add **Name** and **Sample Period** and click **Next**.

12. Select **Tags** as shown and click **Finish**.
13. Right click on chart to select Properties.

14. Adjust pen colors to your preference
15. Adjust **Time span** on the **X-Axis**.

16. Adjust **Y-Axis** to **Custom** and Display Decimal Places to **1** and click **OK**.
17. Download to the controller and place in **Run** mode.

18. Open the CC_01 properties, go to the Autotune tab and click **Start** to run the Autotune for CV1

CV1 should be highlighted in green and the Autotune Status should show **In Progress**
19. When the Autotune is completed the Autotune Status will change to **Completed** and the **Autotuned Model Values** will update.

20. The **Medium** Response Time Constant is preselected, click **Set Tuned Values**.

 ![Image of Autotune interface](www.infoPLC.net)
21. Run the autotune for CV2 by selecting Perform Autotune on CV2 and clicking Start.

CV2 will turn green and the status will show **In Progress**.
22. When the Autotune is completed the Autotune Status will change to **Completed** and the **Autotuned Model Values** will update.

23. The **Medium** Response Time Constant is preselected, click **Set Tuned Values**.
24. Run the autotune for CV3 by selecting Perform Autotune on CV3 and clicking **Start**.

CV3 will turn green and the status will show **In Progress**.
25. When the Autotune is completed the Autotune Status will change to **Completed** and the **Autotuned Model Values** will update.

26. The **Medium** Response Time Constant is preselected, click **Set Tuned Values**.
27. Click on the **Model** tab

![Model properties window](image)

The internal models being used for each of the outputs is shown here.

28. Open the CC_Simulation trend and click **Run** to begin trending.
29. The state of the CC control is Operator – Manual. Change SPOper to ‘40’ and CV1Oper to ‘10’, click OK and observe the trend.

Always click Apply after each change.

Note: The trend will show a response to the CV1Oper change since the CC control is in manual. The SPOper change will not affect anything at this time since we are not in Auto control.
30. Put CV1Oper back to zero, let the PV settle back to zero and then make CV2Oper 10. Repeat for CV3Oper. Observe the trends.

Note that the dissolved oxygen levels respond to each of the outputs being moved from 0 to 10. The response is slightly different for each of the CV actions.

Put CV3Oper value back to zero and click **Apply**

31. Now put CV1 into auto by entering a ‘1’ into OperCV1AutoReq and then clicking **Apply**.
IMPORTANT: the OperCV1AutoReq is a front edge request, meaning as soon as you Apply it triggers back to 0

Note: The ‘1’ is a one-shot entry and will return to a ‘0’.
Note that AgitatorSpeed (CV1EU) has been adjusted to control the DissolvedOxygen to the setpoint of 40. The Target value for CV1 is 5, but since the only control available is CV1 (CV2 and CV3 are still in manual), CV1 is adjusted as needed to reach the setpoint.
32. Put CV2 into auto too.

Note that AgitatorSpeed (CV1EU) has been reduced to its target value (5) and AirFlow (CV2EU) adjusted to control the DissolvedOxygen to the setpoint of 40. The Target value for CV2 is 15, but since the only control available is CV1 and CV2 (CV3 are still in manual), and CV1 is the first priority to stay at target value, CV2 is adjusted as needed to reach the setpoint.
33. Put **CV3** into Auto.

Note that AgitatorSpeed (CV1EU) has been reduced to its target value (5), AirFlow (CV2EU) has been reduced to its target value (15) and Pressure has been adjusted to control the DissolvedOxygen to the setpoint of 40. The Target value for CV3 is 10, but since CV3 is the lowest priority it is adjusted as needed to reach the setpoint.
34. In the General Tab change the Drive to Target Priorities and observe the changes in the three outputs.

<table>
<thead>
<tr>
<th>Control Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use CV Track Values</td>
</tr>
<tr>
<td>CV Track Value</td>
</tr>
<tr>
<td>Override Value</td>
</tr>
<tr>
<td>Target Value</td>
</tr>
</tbody>
</table>

Deviation Action Priority:
- First: CV1
- Second: CV2
- Third: CV3

Drive to Target Priority:
- CV3
- CV2
- CV1

Notice that CV2 and CV3 (now having the highest priorities) are being brought at their target values and CV1 is being adjusted to meet the setpoint.
35. Leaving our priority setting as they were, change the Operator SP to 60.

CV1 is adjusted to meet the setpoint. CV2 or CV3 did initially move from their target values, but eventually went back to their target values.
36. Changes the setpoint to 85 and priorities as shown. Observe the reaction of the control.

<table>
<thead>
<tr>
<th>Control Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV1</td>
</tr>
<tr>
<td>CV2</td>
</tr>
<tr>
<td>CV3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CV Track Value</th>
<th>CV1</th>
<th>CV2</th>
<th>CV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Override Value</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Target Value</td>
<td>50%</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deviation Action Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
</tr>
<tr>
<td>Second</td>
</tr>
<tr>
<td>Third</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive to Target Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV3</td>
</tr>
<tr>
<td>CV1</td>
</tr>
<tr>
<td>CV2</td>
</tr>
</tbody>
</table>

End of lab 2
CONGRATULATIONS!
YOU HAVE COMPLETED THE ADVANCED PROCESS CONTROL HANDS-ON LAB!

You can find this workbook on
www.rockwellautomation.com/events/au